January 2010 Ondrej Stanék, ostan.cz

IR protocol analyzer - user’s manual

Overview

IR protocol analyzer is a universal application for automatic decoding dozens types of
infrared remote control protocol packets. The application uses microphone input of a soundcard to
capture infrared signal form a remote control. As a consequence, the hardware receiver is
minimalistic and easy to build; just plug a phototransistor to input of your soundcard, that’s all
hardware you need.

Application processes IR signal from a remote control and compares it with its own database of
known protocols. When a match is found, packet is decoded and its characteristic is displayed to user
(including protocol name, description, decoded data and graph with timing).

Protocol definitions are stored in separate XML file. This XML file can be easily modified and
new protocol definitions can be added by user. When an unknown packet is captured, user may still
display its graph with timing details. Then, on the basis of the graph and timing, he may create new
protocol description.

All captured data can be saved to a file and restored later. Moreover, packet graph can be
exported to a bitmap image.

Getting started

You may want test the application without any hardware receiver first. For such case | made
some testing data for you. You can find them in ‘samples’ directory. To open sample data, launch IR
protocol analyzer and then press Ctrl+L (or choose File -> Load samples). File open dialog will appear;
select the ‘samples’ directory, choose one of *.map files and click ‘Open’.

Now you can see former captured packets in the Samples list. Click a sample to view its packet
details and graph. That’s enough for now; refer to the User interface chapter for more information.

Building a simple IR hardware receiver

OK, you have just tested the application with some sample data and now you are certainly
agog for analyzing your own remote controls. :) Let’s build a receiver to utilize all features of IR
protocol analyzer! Construction of a receiver is the simplest as it can be. All you need is a 3.5mm jack
connector, a phototransistor (any type, it doesn’t matter as long it’s sensitive to infrared light —
sensitivity near 940nm is ideal), a soldering gun and a piece of wire. Connect components like on the

picture below:
K
4

_mic B

The receiver is passive — that means there is basically no chance to hurt your soundcard.
However, be aware that you use the receiver ON YOUR OWN RISK. I'm not responsible for any
damages done to your computer.

January 2010 Ondrej Stanék, ostan.cz

Capturing samples from a remote control

Plug your brand-new receiver into a microphone input of your soundcard. Launch IR protocol
analyzer and click the ‘Recording’ button. IR protocol analyzer starts sampling sound data from
microphone (but because there is the IR receiver instead of a microphone, it actually captures
infrared signal). While signal recording is active, put the phototransistor directly in front of the
transmitting IR LED of your remote control and press a button on the remote. Remote control will
send a packet and new samples will appear in the ‘Samples’ list. Finally, click the ‘Recording’ button
again to stop capturing data.

User interface

[T 1N JHTE
File About
— Graph

: , — Samples
@ Recording Clear zamples Time Pratocal Data ILength |Gap |;|
nam 15:06:52 Sony SIRC command=101; address 20ms 29.3ms
i~ Packet details : £
15:08:55 MEC addresz=13243; command=201 ; lcommand=54; B71mz 13z
Sony SIRC 15:08:55 MEC [repeat code] 119me 4lms
hittp: /v, shprojects. comknowledge.fin/sire. him 15:08:55 NEC [repeat code] 11,8ms 97.5ms
The SIRC protocol uses a pulse width encoding of the bits. The & 15:08:55 MEL [repeat code) 11.9ms 97 Fms
| i logical "1" iz a 1.2ms lang burst of th
Ok arer. whie the burst widih for o logica] "0 s 0.6ims 150926 NEC address=65025; command=3; lcommand=246; B8.2ms 293s
long. Al "Lff‘j are se%arated I?y a ?.ﬁ‘ms I10?39 space interval. The 15:10:37 Panasonic byte0=2; byte1=32; bpte2=175; byte3=0; byted=17; bpteB=161; |56.2ms 15.4s
recommended carrier duty-cycle is 144 or 1/3.)
Wit this pratacal the LSE is fransmittad first. The start burst is 15:10:37 Fanasonic byte0=2; byte1=32; byte2=176; byte3=0; byted=17; bpteb=161, |56 1ms 74.7ms _I
always 2.4ms wide, followed by a standard space of 0.Bms ApartLI 15:10:37 Panazonic butel=2; byte1=32; bute2=176; byte3=0; byted=17; byteb=161; | B61mz 74.7ms
15:10:44 Fanasonic byte0=2; byte1=32; byte2=160; byte3=0; byted=201; bpteb=105; 57 7ms 6.1s
data name dec hex bin I 15:10:44 Panazonic butel=2; byte1=32; bute2=160; byte3=0; byted=201; bpteB=105; |57.7mz 74.1ms
1 0xE5 1100101 15:10:44 Panasonic bytel=2; byte1=32; byte2=160; byte3=0; byted=201; byteb=105; |57.7ms 74.1ms
addiess 1 01 1 15:10:59 RC-E extended commandBite=0; togglebit=1; addiess=8; cammand=23; 24.1mz 151
15:10:59 RC-5 extended commandBitE=0; togglebit=1; addiess=8; command=23; 241ms 89.9ms
15:10:59 RC-5 extended commandBité=0; togglebit=1; address=8; command=23; 24mz 89.9ms LI
| Recording stopped | | 4

The ‘Recording’ button

This two-state button starts or stops recording. On startup, recording is stopped and button is
up. Clicking this button will start capturing data from your soundcard. While application is capturing
data, ‘Recording’ button is in pressed state. To stop recording, click the button again. The button
returns to up state and recording is stopped.

Samples
Samples list contain captured or loaded data. You can see a number of basic information about

each sample. Those are:

e (Capture time

e Protocol name

e Packet data

e Packet length — time duration from start of first mark to end of last mark (burst)

e Gap —time interval between end of previous sample and start of this sample

January 2010 Ondrej Stanék, ostan.cz

Click a sample to see its details and graph.

Graph

The graph shows captured raw signal from your soundcard. Each pulse is marked with its
timing, time intervals are in ps. Furthermore, if the sample was successfully decoded, the packet
structure is displayed and packet segments (delimiters and bit groups) are tagged with their names.
Use the scale bar to zoom in and out.

Packet details

Detailed description of selected packet is displayed, including information about the protocol
and list of decoded data (in decimal, hexadecimal and binary notation).

Save and Load samples

In the ‘File’ menu you may ‘Save’ (Ctrl+S) or ‘Load’ (Ctrl+L) captured samples. Saving samples
will store all raw data that you have recorded (i.e. all samples in the ‘Samples’ list) to a file. Actually
two files are created; *.map and *.dat file. The *.map file contains necessary sample descriptions
(capture time, sample length and gap). The *.dat file contains chunks of data recorded from your
soundcard. When opening sample files, both *.map and *.dat files must be present in the same
directory.

IR protocol analyzer doesn’t save any data that can be reconstructed from the raw data. That
means that anytime a sample file is opened, raw data are scanned and decoded again, using a
protocol definitions file loaded on application startup. By the way, that’s great opportunity to test
how changes in the ‘protocols.xml’ file affect protocol recognition. Feel free to try that.

Export image
Application allows you to export currently displayed graph to a bitmap image (*.bmp). Open
the ‘File’ menu and choose ‘Export graph’ (Ctrl+E).

Protocol definition file

On startup, IR protocol analyzer loads file ‘protocols.xml’ located in the same directory as the
executable file. This XML file contains protocol descriptions. Its structure was designed with a respect
to user, who may want to extend the protocol description database by himself. If you are interested
in adding new protocol definitions, see ‘protocols.xml’ for more details...

Troubleshooting

Problem: ‘When | start recording, regardless whether the receiver is connected or not, samples list
fills with many samples of unknown protocol. Their graphs look like an audio wave.’
IR protocol analyzer probably samples sound from your music player or other application.
Solution: Mute all sound sources.

	Overview
	Getting started
	Building a simple IR hardware receiver
	Capturing samples from a remote control
	User interface
	The ‘Recording’ button
	Samples
	Graph
	Packet details
	Save and Load samples
	Export image

	Protocol definition file
	Troubleshooting

